Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Effects of acoustic frequency and amplitude on NOx of partially premixed flame
SHEN Zhong liang, DENG Kai, WANG Ming xiao, ZHONG Ying jie
Engineering Research Center of Pluse Technology, Institute of Energy and Power Engineering,
Zhejiang University of Technology, Hangzhou 310014, China
Download:   PDF(955KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The effects of acoustic frequency(0~180 Hz) and amplitude(0~1000 Pa) on the NOx of methane/air partially premixed flame wereinvestigated experimentally. High speed camera, flame image and thermocouple temperature measurements were used to analyzethe relationship between acoustic amplitudeand frequency with EINOx. The results show that whenacoustic amplitude increases, EINOx decreases. Thereason is that under the larger acoustic amplitude, the strengthen of mixing of flame and surrounding gas lead to the decrease of flame length and global residence time, which is the major factorfor the lower EINOx.There is a linear relationship between EINOx and amplitudethatthe slope of the linear function is range from -0.009 to -0.003. The results also show thatwhen acoustic frequency increases,EINOx increases. Becausethat under the higher frequency, the effect of acoustic field on flame decreases, then lead tothe longer flame length, which is the reason forhigher EINOx. There is a linear relationship between EINOx and frequencythatthe slope of the linear function is range from 0.01 to 0.03.



Published: 01 November 2015
CLC:  TK 16  
Cite this article:

SHEN Zhong liang, DENG Kai, WANG Ming xiao, ZHONG Ying jie. Effects of acoustic frequency and amplitude on NOx of partially premixed flame. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2198-2204.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008 973X.2015.11.0234     OR     http://www.zjujournals.com/eng/Y2015/V49/I11/2198


声场频率与振幅对火焰NOx生成特性的影响

针对频率为0~180 Hz和压力振幅为(0~1000 )Pa的声场作用对甲烷/空气部分预混火焰NOx生成特性的影响,通过高速摄像、火焰直拍、热电偶测温等技术,分析火焰EINOx、火焰长度与声场振幅、频率之间的关系.结果显示,在频率为0~180 Hz和压力振幅为(1~1000) Pa内,当频率f一定时,随压力振幅的增加,火焰与周围气体的掺混进一步增强,火焰长度减小,高温区域停留时间减小,致使EINOx生成降低,且EINOx与振幅之间存在线性关系,斜率为-0.009~-0.003.在振幅一定时,随频率的增加,声对火焰的影响逐渐减弱,火焰长度逐渐增加,火焰区域的平均温度降低,导致EINOx增加,且EINOx与频率之间存在线性关系,斜率为0.01~0.03.

[1]周俊虎, 汪洋, 杨卫娟,等. 不同外部风温对微尺度火焰的影响[J]. 浙江大学学报:工学版, 2011. 45(1): 146-151.
ZHOU Jun hu,WANG Yang,YANG Wei juan, et al. Effect of external wind temperature to micro scale flame[J]. Journal of Zhejiang University:Engineering Science, 2011, 45(1): 146-151.
[2]TURNS S R, Understanding NOx formation in nonpremixed flames: Experiments and modeling [J]. Progress in Energy and Combustion Science, 1995, 21(5): 361-385.
[3]DE ZILWA S R N, EMIRIS I, UHM J H, Et al. Influence of oscillations on NOx emissions from ducted flames [J]. Experiments in Fluids, 2002, 32(4): 453-457.
[4]KIM H K,KIM Y. Studies on combustion characteristics and flame length of turbulent oxy fuel flames [J]. Energy & Fuels, 2007, 21(3): 1459-1467.
[5]MEUNIER P, COSTA M, CARVALHO M G. The formation and destruction of NO in turbulent propane diffusion flames [J]. Fuel, 1998, 77(15): 1705-1714.
[6]WEILAND N, CHEN R H,STRAKEY P. Effects of coaxial air on nitrogen diluted hydrogen jet diffusion flame length and NOx emission[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2983-2989.
[7]LI G, GUTMARK E J. Effect of exhaust nozzle geometry on combustor flow field and combustion characteristics [J]. Proceedings of the Combustion Institute, 2005, 30(2): 2893-2901.
[8]LEE D, PARK J k, JIN J, et al. A simulation for prediction of nitrogen oxide emissions in lean premixed combustor [J]. Journal of Mechanical Science and Technology, 2011, 25(7): 1871-1878.
[9]CHAO Y C, HUANG Y W, WU D C. Feasibility of controlling NOx emissions from a jet flame by acoustic excitation [J]. Combustion Science And Technology, 2000, 158: 461.
[10]TASHTOUSH G T. Effect of acoustics on NOx emission in premixed flame, experimental study [J]. Energy & Environment, 2003,14(4): 451-460.
[11]HASSAN M I, WU T W, SAITO K. A combination effect of reburn, post flame air and acoustic excitation on NOx reduction [J]. Fuel, 2013, 108: 231-237.
[12]BAGHERI  SADEGHI N, SHAHSAVARI M, FARSHCHI M. Experimental characterization of response of lean premixed low swirl flames to acoustic excitations [J]. International Journal Of Spray And Combustion Dynamics, 2013, 5(4): 309-327.
[13]OH J, HEO P,YOON Y. Acoustic excitation effect on NOx reduction and flame stability in a lifted non premixed turbulent hydrogen jet with coaxial air [J]. International Journal Of Hydrogen Energy, 2009, 34(18): 7851-7861.
[14]梁军辉, 黄群星, 冯玉霄,等. 氧体积分数对乙烯扩散火焰中烟黑生成影响的实验[J]. 浙江大学学报:工学版, 2012. 46(8): 1465-1472.
LIANG Jun hui,HUANG Qun xing,FENG Yu xiao. et al. Experimental analysis of the effect of oxygen concentration on soot formation in ethylene diffusion flame[J]. Journal of Zhejiang University:Engineering Science, 2012, 46(8): 1465-1472.
[15]COSTA M, PARENTE C, SANTOS A. Nitrogen oxides emissions from buoyancy and momentum controlled turbulent methane jet diffusion flames [J]. Experimental Thermal and Fluid Science, 2004, 28(7): 729-734.
[16]KIM M, OH J, YOON Y. Flame length scaling in a non premixed turbulent diluted hydrogen jet with coaxial air [J]. Fuel, 2011, 90(8): 2624-2629.
[17]LORETERO M E, HUANG R F. Effects of acoustic excitation and annular swirl strength on a non premixed and swirl stabilized flame[J]. Journal of Energy Engineering, 2013, 139(4): 329-337.
[18]MIKOFSKI M, WILLIAMS T, SHADDIX C et al. Flame height measurement of laminar inverse diffusion flames [J]. Combustion and Flame, 2006, 146(1/2): 63-72.
[19]MORCOS V H, Abdel Rahim Y M . Parametric study of flame length characteristics in straight and swirl light fuel oil burners [J]. Fuel, 1999, 78(8): 979-985.
[20]KIM S C , CHUN Y N. Improvement of combustion efficiency and reduction of NOx emission by external oscillation of reactants in an oil burner [J]. Korean Journal Of Chemical Engineering, 2008, 25(1): 73-77.
[21]MOSEL K G, SCHWING J E, FENNINGER W J ,et al. Influence of heat and mass transfer on the ignition and NOx formation in single droplet combustion[J]. Heat and Mass Transfer, 2011, 47(8): 1065-1076.
[22]FEITELBERG A S, STARKEY M D, SCHIEFER R B, et al. Performance of a reduced NOx diffusion flame combustor for the MS5002 gas turbine[J]. Journal of Engineering for Gas Turbines and Power Transactions of the Asme, 2000, 122(2): 301-306.
[23]钟英杰,邓凯,李华,等. 声场作用下甲烷部分预混火焰NOx生成特性实验研究[J]. 工程热物理学报, 2011, 32(9): 1609-1612.
ZHONG Ying Jie, DENG Kai, LI Hua ,et al. Experimental study of NOx emission in partially premixed flame under acoustic forcing [J]. Journal of Engineering Thermophysics, 2011, 32(9): 1609-1612.
[24]沈忠良,邓凯,卢冰,等. 声场作用下甲烷部分预混火焰不同当量比和流速对NOx生成的影响[J]. 中国电机工程学报, 2013, 33(5): 5460.
SHEN Zhong liang, DENG Kai, LU Bing, et al. Effects of equivalence ratio and velocity on NOx emissions in methane partially premixed flames with acoustic excitation [J]. Proceedings of the CSEE,2013, 33(5): 54-60.
[25]邓凯, 钟英杰, 李华,等.甲烷自激励脉动燃烧NOx排放特性的试验研究[J]. 动力工程学报. 2010, 30(7): 528-535.
DENG Kai, ZHONG Ying jie, LI Hua. et al. Experimental study on NOx emission from methane self excited pulsating combustion[J]. Journal of Chinese Society of Power Engineering, 2010, 30(7): 528-535.

[1] HONG Ying-jie, WANG Gen-juan, WANG Ming-xiao, WANG Wei-hao, DENG Kai. System based on Cassegrain optical principle applicable to measure chemiluminescence in flame[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 1044-1050.
[2] HUANG Tiao, YANG Wei juan, ZHOU Jun hu, WANG Zhi hua, LIU Jian zhong, CEN Ke fa. Experimental study of premixed n-heptane/air catalytic combustion characteristics in micro-cylindrical tube[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2058-2063.
[3] LI Jian, LIU Meng, DUAN Yu feng, XU Chao. Physicochemical analysis on hydrothermal upgrading of sewage sludge with lignite for solid fuel[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 327-332.
[4] ZHOU Hao, SHI Wei, ZHU Guo dong. Solve CO inhibition of SNCR reaction by additive MMT[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2237-2243.
[5] HU You rui, LIU Yan, WANG Yang, LIU Jian zhong, ZHOU Jun hu, HU Wei, LI Hong wei. Numerical simulation and orthogonal optimization design for high humidity hydrogen oxygen injector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2403-2409.
[6] HAN Zhi-jiang, ZHOU Jun-hu, YANG Wei-juan, YANG Cheng-hu. Experimental and model study on ignition of magnesium in steam[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(2): 267-272.
[7] YANG Wen-chuang, YANG Wei-juan, ZHOU Zhi-jun, YUAN Wei-dong,. Influence of secondary air angle on flow field in down-fired furnace
determined by cold-flow modeling experiment
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(1): 139-145.
[8] LIANG Jun-hui, HUANG Qun-xing, FENG Yu-xiao, CHI Yong, YAN Jian-hua. Experimental analysis of the effect of oxygen concentration on
soot formation in ethylene diffusion flame
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(8): 1465-1471.
[9] ZHOU Zhi-jun, JIANG Xu-dong, ZHOU Jun-hu, LIU Jian-zhong, CEN Ke-fa. Ignition model and kinetic parameters analysis of oxygen-enriched
combustion of pulverized coal
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(3): 482-488.
[10] CHEN Yao-ji, ZHOU Zhi-jun, ZHOU Ning, YANG Wei-juan, LIU Jian-zhong, ZHOU Jun-hu. The experimental study of combustion and NOx emission
characteristics of Guizhou anthracite
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(11): 2020-2025.
[11] DU Cong,HUANG Zhen-yu,LIU Jian-zhong,ZHAO Zi-tong,LI Bo,ZHOU Jun-hu,CEN Ke-fa. Experimental study of atomization and spray characteristics of
air-assisted coal water slurry nozzle of high fluid loading
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(4): 727-733.
[12] ZHOU Jun-hu, WANG Yang, YANG Wei-juan, LIU Jian-zhong, WANG Zhi-hua, CEN Ke-fa. Effect of external wind temperature to micro-scale flame[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(1): 146-150.